import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= throw(fraudTrain,0.5) df50
= try_1(df50, 0.5, 0.5, 10973.519989002007, 0.501)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.5, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.6, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.7, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.8, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.9, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.4, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.3, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 15000, 0.2, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.891757 | 0.959609 | 0.817879 | 0.883094 | 0.925402 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10973.519989 | 0.501 |
1 | GCN | None | 0.903969 | 0.959570 | 0.843420 | 0.897754 | 0.936666 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.500 |
2 | GCN | None | 0.890647 | 0.960105 | 0.815103 | 0.881682 | 0.925188 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.600 |
3 | GCN | None | 0.884541 | 0.960745 | 0.801777 | 0.874092 | 0.915326 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.700 |
4 | GCN | None | 0.880377 | 0.950066 | 0.802887 | 0.870298 | 0.902739 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.800 |
5 | GCN | None | 0.872884 | 0.959617 | 0.778456 | 0.859595 | 0.876013 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.900 |
6 | GCN | None | 0.908132 | 0.956522 | 0.855081 | 0.902961 | 0.942754 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.400 |
7 | GCN | None | 0.913961 | 0.952641 | 0.871183 | 0.910093 | 0.947405 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.300 |
8 | GCN | None | 0.912295 | 0.962617 | 0.857857 | 0.907223 | 0.952030 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 15000.000000 | 0.200 |
= try_1(df50, 0.5, 0.5, 10000, 0.2)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.2, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.18, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.16, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.14, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.12, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 10000, 0.10, prev_results=df_results)
df_results f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.909797 | 0.961827 | 0.853415 | 0.904384 | 0.946367 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.20 |
1 | GCN | None | 0.910075 | 0.961274 | 0.854525 | 0.904762 | 0.946356 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.20 |
2 | GCN | None | 0.910352 | 0.961298 | 0.855081 | 0.905084 | 0.946452 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.18 |
3 | GCN | None | 0.913961 | 0.956522 | 0.867296 | 0.909726 | 0.947426 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.16 |
4 | GCN | None | 0.912295 | 0.962041 | 0.858412 | 0.907277 | 0.948787 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.14 |
5 | GCN | None | 0.915903 | 0.957265 | 0.870627 | 0.911893 | 0.950264 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.12 |
6 | GCN | None | 0.917291 | 0.957395 | 0.873404 | 0.913473 | 0.951514 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10000 | 0.10 |
= try_1(df50, 0.5, 0.5, 98000, 0.1)
df_results = try_1(df50, 0.5, 0.5, 96000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 94000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 92000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 90000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 88000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 86000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 84000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 82000, 0.1, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 80000, 0.1, prev_results=df_results)
df_results f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.964752 | 0.973416 | 0.955580 | 0.964416 | 0.987621 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 98000 | 0.1 |
1 | GCN | None | 0.967527 | 0.965193 | 0.970017 | 0.967599 | 0.987662 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 96000 | 0.1 |
2 | GCN | None | 0.967250 | 0.964660 | 0.970017 | 0.967331 | 0.987736 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 94000 | 0.1 |
3 | GCN | None | 0.967250 | 0.964660 | 0.970017 | 0.967331 | 0.987737 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 92000 | 0.1 |
4 | GCN | None | 0.968637 | 0.968368 | 0.968906 | 0.968637 | 0.987742 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 90000 | 0.1 |
5 | GCN | None | 0.968360 | 0.967831 | 0.968906 | 0.968368 | 0.987859 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 88000 | 0.1 |
6 | GCN | None | 0.966972 | 0.964128 | 0.970017 | 0.967063 | 0.987888 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 86000 | 0.1 |
7 | GCN | None | 0.968082 | 0.970950 | 0.965019 | 0.967975 | 0.987927 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 84000 | 0.1 |
8 | GCN | None | 0.967805 | 0.965727 | 0.970017 | 0.967867 | 0.987995 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 82000 | 0.1 |
9 | GCN | None | 0.966972 | 0.964128 | 0.970017 | 0.967063 | 0.988069 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 80000 | 0.1 |
= try_1(df50, 0.5, 0.5, 88000, 0.2)
df_results = try_1(df50, 0.5, 0.5, 96000, 0.3, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 94000, 0.4, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 92000, 0.5, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 90000, 0.6, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 88000, 0.7, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 86000, 0.8, prev_results=df_results)
df_results = try_1(df50, 0.5, 0.5, 84000, 0.9, prev_results=df_results)
df_results f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.967250 | 0.972487 | 0.961688 | 0.967058 | 0.987065 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 88000 | 0.2 |
1 | GCN | None | 0.965307 | 0.965039 | 0.965575 | 0.965307 | 0.986926 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 96000 | 0.3 |
2 | GCN | None | 0.963364 | 0.963354 | 0.963354 | 0.963354 | 0.984985 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 94000 | 0.4 |
3 | GCN | None | 0.937552 | 0.954965 | 0.918379 | 0.936315 | 0.968513 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 92000 | 0.5 |
4 | GCN | None | 0.928948 | 0.950437 | 0.905053 | 0.927190 | 0.962901 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 90000 | 0.6 |
5 | GCN | None | 0.913405 | 0.963863 | 0.858967 | 0.908397 | 0.957015 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 88000 | 0.7 |
6 | GCN | None | 0.915071 | 0.953855 | 0.872293 | 0.911253 | 0.948241 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 86000 | 0.8 |
7 | GCN | None | 0.895087 | 0.961713 | 0.822876 | 0.886894 | 0.931524 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 84000 | 0.9 |